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1.0 Introduction 
 

 The development of rockets and satellites capable of carrying instruments outside 
the absorbing layers of the Earth’s atmosphere has made possible the observation of 
celestial objects in the x-ray range of wavelength. 
 
 X!rays of energy greater than several hundreds of electron volts can penetrate the 
interstellar gas over distances comparable to the size of our own galaxy, with greater or 
lesser absorption depending on the direction of the line of sight.  At energies of a few 
kilovolts, x!rays can penetrate the entire column of galactic gas and in fact can reach us 
from distances comparable to the radius of the universe. 
 
 The possibility of studying celestial objects in x!rays has had a profound 
significance for all astronomy.  Over the x!ray to gamma– ray range of energies, x!rays 
are, by number of photons, the most abundant flux of radiation that can reveal to us the 
existence of high energy events in the cosmos.  By high energy events I mean events in 
which the total energy expended is extremely high (supernova explosions, emissions by 
active galactic nuclei, etc.) or in which the energy acquired per nucleon or the 
temperature of the matter involved is extremely high (infall onto collapsed objects, high 
temperature plasmas, interaction of relativistic electrons with magnetic or photon fields).   
 
 From its beginning in 1962 to today, the instrumentation for x!ray astronomical 
observations has improved in sensitivity by more than 9 orders of magnitude, comparable 
to the entire improvement from the capability of the naked eye to those of the current 
generation of 8! or 10!meter telescopes.  All categories of celestial objects, from planets 
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to normal stars, from ordinary galaxies to quasars, from small groups of galaxies to the 
furthest known clusters, have been observed.  As a result of these studies it has become 
apparent that high energy phenomena play a fundamental role in the formation and in the 
chemical and dynamical evolution of structures on all scales.  X!ray observations have 
proved of crucial importance in discovering important aspects of these phenomena.  It 
was from x!ray observations that we obtained the first evidence for gravitational energy 
release due to infall of matter onto a collapsed object such as a neutron star or black hole.  
It was the  x!ray emission from the high temperature plasmas in clusters of galaxies that 
revealed this high temperature component of the Universe, which more than doubled the 
amount of “visible” matter (baryons) present in clusters. 
 
 The prospects for future studies of the universe in x!rays are equally bright.  The 
advent of new and even more powerful experimental techniques, such as non-dispersive 
high resolution spectroscopy and x!ray telescopes capable of focusing increasingly 
higher energies over wider fields, insures a wide opportunity for new astronomical 
discoveries. 

 
2.0 The Beginning of X!Ray Astronomy 

 
 There had been solar x!ray observations for about 10 years by the Naval Research 
Laboratory (NRL) group led by Herbert Friedman and several failed attempts to find 
x!ray  emissions from stellar objects (Hirsh 1979)1 when a group at AS&E (a small 
private research corporation in Cambridge, Massachusetts) started work in 1959 to 
investigate the theoretical and experimental possibilities to carry out x!ray astronomy.  
Giacconi, Clark, and Rossi (Giacconi et al 1960)2  published a document: “A Brief 
Review of Experimental and Theoretical Progress in X-Ray Astronomy,” in which we 
attempted to estimate expected x!ray fluxes from several celestial sources. 
 
 The results are summarized in Table 1.  The Sun produced 106  x!ray photons 
cm!2s!1 at Earth which could easily be detected with the then-available counters with  
sensitivities of about 10 ! 102 photons cm!2s!1.  But if all the stars emitted x!rays at the 
same rate as the Sun, we would expect fluxes at earth as small as 10!4 photons cm-2s-1.  
Other possible sources, such as supernova remnants, flare stars, peculiar A stars, etc., 
were considered, and great uncertainty had to be assigned to the estimates of their x!ray 
fluxes.  It seemed that the brightest source in the night sky could be the Moon, due to 
fluorescent emission of lunar material under illumination of solar x!rays.  
 
 We designed an experiment capable of detecting 0.1!1 photon/cm!2s!1, 50 to 100 
times more sensitive than any flown before.  This increase in sensitivity was due to larger 
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area, an anticoincidence shield to reduce particle background, and a wide solid angle to 
increase the probability of observing a source during the flight.  The payload shown in  
Fig. 1 was successful in detecting the first stellar x!ray source in the flight of June 12, 
1962 (Giacconi et al 1962)3.   An individual source (Sco X!1) dominated the night sky 
and was detected at 28 " 1.2 counts cm!2s!1, just below the threshold of previous 
experiments (Fig. 2).  No exceptionally bright or conspicuous visible light or radio object 
was present at that position (which, however, was very poorly known).  An early 
confirmation of our result came from the rocket flight of April 1963 by the NRL group 
led by Friedman, which also discovered x–ray emission from the Crab Nebula (Bowyer et 
al 1964).4 
 
 The truly extraordinary aspect of the discovery was not that an x!ray star had been 
found but its extraordinary properties.  The x!ray radiation intensity from the Sun is only 
10!6 of its visible light intensity. In Sco X!1, the x-ray luminosity is 103 times the visible 
light intensity and it was later determined that the intrinsic luminosity is 103 the entire 
luminosity of the Sun!  This was a truly amazing and new type of celestial object.  
Furthermore, the physical process by which the x!rays were emitted on Sco X!1 had to 
be different from any process for x!ray generation we knew in the laboratory since it has 
not been possible on Earth to generate x!rays with 99.9% efficiency.   
 
 Many rocket flights carried out by several groups in the 60's were able to find new 
stellar sources and the first extragalactical sources.  The NRL group and the Lockheed 
group (led by Phil Fisher) continued to carry out mostly broad surveys, with the notable 
exception of the Crab occulation experiment by NRL in 1964 (Bowyer et al 1964).5 
 
 The AS&E group concentrated on the detailed study of individual x-ray sources.  
Most significant was the series of rocket flights which culminated in the identification of 
the optical counterpart of Sco X–1.  First the group determined that Sco X–1 could not 
have the thermal spectrum that would be expected from neutron stars (Giacconi et al 
1965)6, which implied that an optical counterpart should have magnitude 13.  In a first 
rocket flight to measure the angular size of the source it was found to be less than 7 arc 
sec (Oda et al 1965).7  Thus the source had to be a visible star and not a diffused 
nebulosity.  This led to the sophisticated measurement of the location of Sco X–1 by an 
AS&E-MIT group led by Herbert Gursky (Gursky et al 1966)8, with sufficient precision 
to enable its identification with a 13th magnitude star (Sandage et al 1966)9 which had 
spectral characteristics similar to an old nova.  This renewed interest in a binary star 
model for Sco X–1 (Burbidge 1967)10 and Shklovsky proposed a binary containing a 
neutron star (Shklovsky1967)11.  However, the absence of x–ray emission from other 
novas, the lack of indications from either the optical spectra or the x-ray data of a binary 
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system, and the general belief that the supernova explosion required to form the neutron 
star would disrupt the binary system did not lead to the general acceptance of the idea.  
The discovery by Hewish of pulsars in 1967 turned the attention of the theorists to pulsar 
models for the x–ray emitters.  But such models also were not quite persuasive given the 
lack of observed x–ray pulsations.  The solution to the riddle of Sco X–1 and similar 
sources was not achieved until the launch of the “UHURU” satellite, the first of a 
generation of x–ray observatories.     
 
 The proposal to launch a “scanning satellite,” which eventually became UHURU, 
was contained in a document written by Herb Gursky and myself and submitted to NASA 
on September 25, 1963. In this document we described a complete program of  x!ray 
research culminating in the launch of a 1.2 meter diameter x!ray  telescope in 1968.   
This youthful dream was not fully realized until the launch of the Chandra X!Ray 
Observatory in 1999, which, not by chance, had a 1.2 meter diameter mirror. But while 
the difficult technology development that made x!ray telescopes possible was being 
carried out, the most fundamental advances in x!ray astronomy were made with 
relatively crude detectors mounted on orbiting satellites.     
 

3.0 Discoveries with UHURU 
 
 The total amount of time which was available for observation of the x!ray sky 
during the 60's was about one hour: five minutes above 100 km for each of about a dozen 
launches.  The next step which led us from the phenomenological discoveries to those of 
great astrophysical relevance occurred on December 12, 1970, when UHURU, the first of 
the Small Astronomy Satellite series, was launched from the Italian S. Marco platform in 
Kenya.  UHURU was a small satellite (Fig. 3) which we had labored over at AS&E for 
seven years between conception, development, testing, and integration. 
 
 It was the first observatory entirely dedicated to x!ray astronomy and it extended 
the time of observation from minutes to years or by 5 orders of magnitude (Giacconi et al  
1971).12  The field of view of the detector on board the satellite slowly rotated, examining 
a 5o band of the sky that shifted 1o a day.  In three months all the sky could be studied 
systematically and many new sources could be localized with a precision of about 1 arc 
minute, often permitting the identification of the x-ray sources with a visual or radio 
counterpart.  This in turn leads to an evaluation of the distance, the intrinsic luminosity, 
and the physical characteristics of the celestial object from which the x!rays originated.  
Among the 300 new sources which were discovered, we were able to identify binary 
x!ray sources, supernovas, galaxies, active galaxies, quasars, and clusters of galaxies 
(Fig. 4).  But even more important from a certain point of view was the ability, which 
was provided by the control system, to slow down the satellite spin and spend a very long 
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time on an individual source to study its temporal variations.  It was this special ability 
which permitted the solution of the fundamental unresolved problem of x!ray astronomy 
until then, namely, the nature of the energy source capable of producing the large 
intrinsic luminosity of the stellar x!ray sources. 
 

3.1 The Binary X-Ray Sources 
 
 In summary, inspection of the data revealed that some x-ray sources (Her X!1 and 
Cen X!3) (Fig. 5) were regularly pulsating with periods of seconds (Schreier et al 
1972),13 while others (Cyg  X!1) were pulsating with an erratic behavior with 
characteristic times of less than a tenth of a second as first noted by Minoru Oda, who 
was a guest at AS&E at the time.  Ethan Schreier and I noticed that the average intensity 
of Cen X!3 was modulated over the span of days and that the period of pulsation itself 
was changing as a function of the phase of the average intensity, which exhibited 
occulations (Fig. 6).  The explanation for this behavior soon became clear: we were 
observing a stellar x!ray source orbiting a normal star (Fig. 7).  The variation of the 
pulsation period was then due to Doppler effect.  In 1967 Hewish had discovered pulsars 
in the radio domain.  Was this  x!ray source a pulsar in orbit about a normal star?  This 
seemed difficult to accept at the time.  A pulsar is a neutron star whose formation is 
believed to be due to the collapse of a star at the end of its life.  The concomitant 
explosion was believed to disrupt any binary system in which it took place.  Joseph 
Taylor had not yet discovered the binary pulsar. 
 
 But a new, unexpected, and important finding came to light: the period of 
pulsation was decreasing rather than increasing with time (Fig. 8).  This was true not only 
in Cen X!3, but Harvey Tananbaum found the same behavior in Her X!1 (Tananbaum 
1972).14  Now this was truly embarrassing!  In a pulsar the loss of electromagnetic energy 
occurs at the expense of the kinetic energy of rotation.  But in the x!ray sources the 
neutron star was acquiring rather than losing energy!  The explanation was found in the 
interaction of the gas in the normal star with the collapsed star.  Gas from the outer layer 
of the atmosphere of the normal star can fall in the strong gravitational field of the 
collapsed star and acquire energies of order of 0.1 mc2 per nucleon.  The accelerated 
nucleons in turn heat a shock of very high temperature above the surface of the neutron 
star, which emits the observed x!rays (Fig. 9).  It is this material infall that gives energy 
to the collapsed object.  This is the model for Sco X–1 and most of the galactic x–ray 
sources.  In the case of a neutron star with a strong magnetic field (1012 Gauss), the 
ionized plasma is confined to the poles of the rotating neutron star, generating the 
observed periodicities (Fig. 10).  For a black hole, there exists no surface with particular 
structures and therefore the pulsation occurs chaotically (Fig. 11). 
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 The observation by UHURU of rapid variability in Cyg X–1 reported by Oda (Oda 
et al 1971)15 was soon followed by the rocket flights of the GSFC and MIT groups.  
These observations clarified that the observed pulsations were not periodic but chaotic 
(Holt 1971)16 (Rappaport 1971).17  By 1974, the GSFC group had achieved a temporal 
resolution of 1 millisecond and showed large chaotic fluctuations occurring even on this 
time scale (Rothschild 1974).18  Such behavior could be expected to occur if the compact 
object in the binary system (the x–ray source) was a black hole rather than a neutron star.   
Stimulated by these findings, the search for optical or radio counterparts had become 
intense in 1971–1972.  UHURU had obtained a considerably improved position for Cyg 
X–1 which was made available to Hjellming and Wade to aid in the search for a radio 
counterpart (Tananbaum 1971).18  More refined positions were obtained by the Japanese 
group led by Oda (Miyamoto 1971)19 and by the MIT group (Rappaport 1971)20 by use of 
modulation collimators.  Hjelming and Wade (Hjellming and Wade 1971)21 and Braes 
and Miley (Braes and Miley 1971)22 reported the discovery of a radio counterpart.  The 
precise radio location led to the optical identification by Webster and Murdin (Webster 
and Murdin 1972)23 and by Bolton (Bolton 1972)24 of Cyg X–1 with the 5.6 day binary 
system HDE 226862.  The identification of the radio source with Cyg X–1 was 
confirmed by the observation of a correlated x–ray radio transition in Cyg X–1 
(Tannabaum 1972).25 Spectroscopic measurements of the velocity of HDE 226862 also 
permitted Webster and Murdin to establish that Cyg X–1 was indeed in a binary system.  
The estimated mass for the compact object was greater than 6 solar masses.  Rhoades and 
Ruffini had shown in 1972 that black holes would have masses greater than 3.4 times the 
mass of the Sun (Rhoades and Ruffini 1974).26    
 
 Thus we could reach conclusions regarding Cyg X–1: the Cyg X–1 x–ray emitter 
is a compact object of less than 30 km radius due to the rapidity of the pulsations and the 
fact that the pulsations are so large that they must involve the whole object (Giacconi 
1974).27  The object has mass greater than that allowed by our current theories for 
neutron stars.  Therefore the object is the first candidate for a black hole (Fig. 12).  
Currently there are at least six candidates for galactic x–ray sources containing a black 
hole (Tanaka 1992).28 
 
 The consequences of the discovery of binary source x!rays have had far reaching 
consequences (Table 2).  We had proven the existence of binary systems containing a 
neutron star and of systems containing a black hole.  Black holes of solar mass size 
existed.  The binary x!ray sources have become a sort of physical laboratory where we 
can study the mass, moment of inertia, and equation of state for neutron stars (density 
1015gr/cm3).  We had found a new source of energy for celestial objects: the infall of 
accreting material in a strong gravitation field.  For a neutron star the energy liberated per 
nucleon is of order of 50 times greater than generated in fusion.  The above model (of 
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accretion of gas on a collapsed object) has become the standard explanation for the 
internal engines of quasars and all active nuclei.  Recent data seem to confirm the model 
of accretion on a massive central black hole of  >107 solar masses as the common 
denominator among all the active galaxies.   
 
 

3.2 The Discovery of High Temperature Intergalactic Gas 
 
 The prominence of variability in the x–ray universe, the existence of neutron stars 
and black holes in binary systems, and the discovery of accretion as a dominant energy 
source was only the first major accomplishment of UHURU.  Among others was a 
second very important discovery of UHURU and x!ray astronomy, both because of its 
intrinsic interest and for its consequences in the field of cosmology, the detection of 
emission from clusters of galaxies.  This emission is not simply due to the sum of the 
emission from individual galaxies, but originates in a thin gas which pervades the space 
between galaxies.  This gas was heated in the past during the gravitational contraction of 
the cluster to a temperature of millions of degrees and contains as much mass as that in 
the galaxies themselves (Gursky et al 1972)29.  In one stroke the mass of baryons 
contained in the clusters was more than doubled.  This first finding with UHURU, which 
could detect only the three richest and closest galaxy clusters and with a poor angular 
resolution of ½ a degree, were followed and enormously expanded by the introduction of 
a new and powerful x!ray observatory, “Einstein,” which first utilized a completely new 
technology in extrasolar x!ray astronomy: grazing incidence telescopes.   
 

4.0  X–ray Telescopes 
 
 Here I must make a short technical diversion to explain the revolution brought 
about in x!ray astronomy by the telescope technology.  When contemplating the 
estimates made in 1959, I was persuaded that to ultimately succeed in x!ray astronomy, 
we had to develop new systems quite different from those then in use.  Friedman had 
developed for solar studies a Geiger counter with a thin window which allowed the x!ray 
to penetrate the interior of the gas volume of the counter.  The counter could not decide 
either the direction of the incoming x!ray nor its energy.  In order to improve the 
directional sensitivity, x–ray astronomers used collimators, that is, mechanical baffles 
which defined a field of view typically of 1o.  To improve sensitivity we developed  
anticoincidence shields against spurious particles and enlarged the area.  This is what was 
done in the discovery rocket of 1962.  In 1970 UHURU had a very similar detection 
system.  Its improvement in sensitivity was due to the much larger area (800 cm2 instead 
of 10) and the much longer time of observation.  This led to an increase in sensitivity of 
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about 104.  It should be noted, however, that in the presence of a background noise, the 
sensitivity improvement was only proportional to square root of the area.  Thus, further 
improvement would have required satellites of football-stadium size.  Furthermore, all 
attempts to gain angular resolution by clever systems of baffles (such as the modulation 
collimators) lead to intrinsically insensitive experiments. 
 
 The solution which occurred to me as early as 1959 was to use a telescope just as 
it is done in visible light astronomy (Giacconi and Rossi 1960).30  This has the great 
advantage that the flux from a large area of collection is focused onto a small detector, 
therefore improving both the flux and the signal to noise ratio.  In addition, high angular 
resolution can be obtained within a field which is imaged at once, without scanning or 
dithering motions, therefore yielding an enormous improvement in exposure time for 
each source in the field. 
 
 The only problem is that an  x!ray telescope had to be invented and the 
technology necessary for its fabrication had to be developed.  It ultimately took about 20 
years between the conception of the x!ray telescope in 1959 and its first use for stellar 
x!ray astronomy in 1979.  An x!ray telescope is quite different from a visible light 
telescope since the wavelength of x!ray photons is comparable to atomic dimensions.  
According to Lorentz’ dispersion theory, it is clear that the index of refraction of x!rays 
is less than one, which makes optical systems based on refraction essentially impractical, 
as was realized by Roentgen himself in his classical experiment of 1895.  However, 
x!rays can be efficiently externally reflected by mirrors, provided only that the reflection 
takes place at very small angles with respect to the mirror’s surface.  Hans Wolter had 
already discussed in the 40's and 50's the possibility of using images formed by reflection 
for microscopy.  He showed that using a double reflection from a system of coaxial 
mirrors consisting of paraboloid and hyperboloid, one could achieve systems with a 
reasonably large field (1o) corrected for spherical aberrations and coma.  Theoretically, 
therefore, the system was feasible, although the difficulties of construction given the tiny 
dimension of the systems for microscopy were impossible to overcome (Fig. 13).  I 
persuaded myself, however, that in the corresponding optical designs to be used for 
telescopes, which required much larger scales (meters rather than microns), such 
difficulties would not be severe.  
 
 In our 1960 paper we described a system that could achieve sensitivities of 5 x 
10!14 erg cm!2s!1 and angular resolutions of 2 arc minutes.    The improvement in 
sensitivity was of 106 - 107 times more than for any detector then current and the 
improvement in angular resolution about a factor of 103.  Unfortunately it took a long 
time to develop this technology (Fig. 14) (Giacconi et al 1969)31.  The first primitive 
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pictures of the Sun with an x!ray telescope were obtained in 1965.  Giuseppe Vaiana 
took over leadership of our solar physics program in 1967.  In 1973 a high resolution 
x!ray telescope studied the Sun during many months with a field large enough to image 
the disk and nearby corona and with angular resolution finer than 5 arc seconds (Fig. 15) 
(Vaiana and Rosner 1978).32   
 
 It was not until 1979 that a fully instrumented x!ray telescope suitable for the 
detection and study of the much weaker stellar fluxes could be launched.  The new 
satellite, which became known as “Einstein,” was a real astronomical observatory (Fig. 
16) (Giacconi et al 1979).33  In the focal plane of the telescope one could use image 
detectors with angular resolutions of a few arc seconds, comparable to those used in 
visible light.  The sensitivity with respect to point sources was increased by 103 with 
respect to UHURU and 106 with respect to Sco X!1.  Spectroscopy could be carried out 
with a spectral resolving power of 500. 
 
 This substantial technical improvement made possible the detection of all types of 
astrophysical phenomena (Table 3).  Auroras due to the Jovian Belts, main sequence stars 
of all types, novae and supernovae were detected.  Binary x-ray sources could be studied 
anywhere in our own galaxy as well as in external galaxies (Fig. 17).  Normal galaxies as 
well as galaxies with active galactic nuclei, such as Seyferts and B Lac, could be detected 
at very great distances.  The most distant quasars ever detected in visible light or radio 
could be conveniently studied.  The sources of the mysterious, isotropic extragalactic 
background could begin to be resolved. 
 
 But to come back to the study of the intergalactic plasma, it is in the study of 
x!ray emissions from clusters of galaxies that the Einstein observations have had some 
of the most profound impact.   The possibility to image the hot plasma has given us the 
means to study in detail the distribution of the gravitational potential which contains both 
gas and galaxies.  This study could only be carried out with some difficulty by studying 
the individual galaxies which, even though rather numerous in rich clusters, did not yield 
sufficient statistical accuracy.  The x!ray study has revealed a complex morphology with 
some clusters exhibiting symmetry and a central maximum of density, which 
demonstrates an advanced stage of dynamical evolution; but many others show complex 
structures with two or more maxima.  This morphology shows that the merging of 
clusters’ substructures is not yet completed.  The relative youth of many of these clusters’  
had not been sufficiently appreciated previously.  The discovery of x!ray emission in 
clusters is therefore used to study one of the most interesting open questions of modern 
cosmology, namely, the formation and development of structures in the early epoch of 
the life of the Universe.  Piero Rosati (Rosati 2002)34 has pushed this work to very distant 
clusters (z ~ 1.2) by use of the “ROSAT” Satellite, a splendid successor to “Einstein,” 
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built at the Max Planck Institute for Extraterrestrial Research by Joachim Trümper and 
Günther Hasinger and their group.  
 

5.0 Current Research with Chandra    
 
 Harvey Tananbaum and I reproposed the concept of a 1.2 meter diameter 
telescope  to NASA in 1976.  Tananbaum, who had been project scientist on UHURU 
and scientific program manager on “Einstein,” gave leadership to the Chandra program 
and brought it to successful conclusion after I left Harvard in 1981.  Chandra has met or 
exceeded all of our expectations.  Comparison of the pictures of the Crab Nebula pulsar 
by “Einstein” and by Chandra (Fig. 18) shows the great improvement in the sensitivity 
and angular resolution achieved (Tananbaum and Weisskopf 2001).35 
 
 I was able to use Chandra for one million seconds to solve the problem of the 
sources of the x!ray background, a problem that had remained unsolved since its 
discovery in 1962 (Fig. 19) (Giacconi et al 2002).36  Owing to the great sensitivity and 
angular resolution of Chandra, we were able to resolve the apparently diffused emission 
into millions of individual sources.  They are active galactic nuclei, quasars, and normal 
galaxies.  The gain in sensitivity that this represents is illustrated in Fig. 20.  In Fig. 21, a 
reminder that x!ray astronomy now involves many groups in the world with distinct and 
essential contributions.   
    

6.0 The Future of X-Ray Astronomy 
 

 Finally, I would like to conclude by attempting to answer the simple question: 
Why is  x!ray astronomy important?  The reason is that this radiation reveals the 
existence of astrophysical processes where matter has been heated to temperatures of 
millions of degrees or where particles have been accelerated to relativistic energies.  The 
x-ray photons are particularly suited to study these processes because they are numerous, 
because they penetrate cosmological distances, and because they can be focused by 
special telescopes.  This last property significantly distinguishes x!ray from (!ray 
astronomy.  However, in a more fundamental way, high energy astronomy has great 
importance in the study of the Universe, because high energy phenomena play a crucial 
role in the dynamics of the Universe.   
 
 Gone is the classical conception of the Universe as a serene and majestic ensemble 
whose slow evolution is regulated by the consumption of the nuclear fuel.  The Universe 
we know today is pervaded by the echoes of enormous explosions and rent by abrupt 
changes of luminosity on large energy scales.  From the initial explosion to formation of 
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galaxies and clusters, from the birth to the death of stars, high energy phenomena are the 
norm and not the exception in the evolution of the Universe.   
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Captions - Tables and Figures  
 
Table 1. Estimates of fluxes from sources outside the solar system, 1960, Giacconi, R., Clark, 

G.W., Rossi, B.B. 
 
Fig. 1  The payload of the June 12, 1962, AS&E rocket. 
 
Fig. 2  The first observation of Sco X–1 and of the X–ray background in the June, 12, 1962 

flight. 
 
Fig. 3  The fields of view of the detectors on the UHURU satellite. 
 
Fig. 4  The x–ray sources observed by UHURU plotted in galactic coordinates.  The size of 

the dot is proportional to intensity on a logarithmic time scale. 
 
Fig. 5  X–ray pulsations of Cen X–3. 
 
Fig. 6  Period variations and occulations of Cen X–3. 
 
Fig. 7  A model of the Cen X–3 binary system. 
 
Fig. 8  Annual change of Cen X–3 pulsation period. 
 
Fig. 9  Representation of the equipotentials in the gravitational field of a typical binary x–ray 

source.  Top view and cross section. 
 
Fig. 10 An artist’s conception of Her X–1 with accretions occurring at the poles of the magnetic 

field of the neutron star. 
 
Fig. 11 Comparison of the time variability of Her X–1, Cyg X–3, and Cyg X–1. 
 
Fig. 12 Artist’s conception of Cyg X–1. 
 
Table 2 Consequences of the discovery of binary x-ray systems. 
 
Fig. 13 Principle of x–ray grazing incidence telescope. 
 
Fig. 14 Several early telescope realizations. 
 
Fig. 15 Picture of Sun in x–ray from Skylab. 
 
Fig. 16 The Observatory Einstein schematic representation. 
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Fig. 17 X–ray binaries in the galaxy M31. 
 
Table 3 Classes of objects observed with the Einstein Observatory. 
 
Fig. 18 The x–ray image of the Crab Nebula obtained from Chandra. (Courtesy of NASA) 
 
Fig. 19 The one million second exposure in the deep x-ray field from Chandra (CDFS). 
 
Fig. 20 The sensitivity change from 1962 to 2000 (Sco X–1 to Chandra).  (Courtesy of Günther 

Hasinger) 
 
Fig. 21 The sensitivity achieved by various x–ray missions (1970 to 2000). 
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